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Abstract. A perturbation calculation is given which implies that the susceptibility of the five 
and six-dimensional n-vector models can be written ,y -At-’(l +Bt”’) and ,y - 
At-’(l +Bt In t )  respectively, independent of n. For n = 0 and 1 it is shown that series 
analysis techniques can extract the above ‘correction-to-scaling’ exponents, and that 
estimates of the critical temperatures and critical amplitudes can also be obtained. The 
correction-to-scaling exponents found are in agreement with those known to exist in the 
case of the spherical model. 

1. Introduction 

In a recent paper (Guttmann 1978) a technique was described whereby estimates of the 
exponent of the confluent logarithmic term which arises in the susceptibility (and other 
thermodynamic properties) at the critical dimension could be obtained. For the 
n-vector model, which is representable by a q54 field theory, the critical dimension is of 
course d = 4. With this technique it was possible to use existing series expansions, 
derived some time ago by Fisher and Gaunt (1964), to obtain estimates of the confluent 
logarithmic exponent, which were in good agreement with those obtained from q54 field 
theory (BrCzin 1975). Unlike the field theoretical calculation, the series analysis also 
yielded estimates of the critical temperature and critical amplitudes. 

For d > d, = 4 the leading susceptibility exponent is a simple pole as predicted by 
mean field theory, but the correction terms are expected to be non-classical. The form 
of these correction terms is mentioned by Pfeuty and Toulouse (1977) as an unsolved 
problem, though Joyce (1972) has obtained the correction terms for the spherical 
model, and finds 

kTX/m2 - Ct-’ + Dt-’/2 f E + Ft1j2 f , . , , (d = 5 )  ( l . la)  

(1.16) 
kTX/m2-Ct - ’+Dln t+t (E+F1nt+Gln2 t )+  . . . ,  (d = 6) 

kTX/m2-Ct-‘+D+Et‘i2+. . . ,  ( d  =7)  ( l . l c )  

where kTx/m2 is the reduced isothermal susceptibility and t = 1 - TIT, is the reduced 
temperature. Thus the ‘correction-to-scaling’ exponent is for d = 5 and 1 for d = 6. 
For the five- and six-dimensional self-avoiding walk (SAW) problem and the Ising 
model, Fisher and Gaunt (1964) obtained the first 11 terms of the susceptibility 
expansion. It seemed worthwhile to see whether these series could be analysed to give 
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both the form of the correction term and estimates of the critical parameters. It was also 
of interest to see whether the form of the susceptibility found by Joyce for the spherical 
model was applicable to other realisations of the n-vector model. 

A heuristic argument due to Fisher (1978, private communication) suggests that this 
is so. Renormalisation group arguments suggest that there should be a singular part of 
the free energy satisfying the hyperscaling relation dv = 2 -as, even for d > 4. Setting 
v = 4 for all n, with d > 4, and extracting the dominant mean-field specific heat term t2, 
we obtain a contribution to the correction-to-scaling terms of the form t (d-4) ’2 .  This is 
consistent with the spherical model results obtained by Joyce. 

I am indebted to the referee for the following remark: One knows from a simple 
€-expansion that for d = 4 + / E /  the correction-to-scaling exponent is independent of n. 
This is additional evidence for the results obtained here. 

In the next section the method of series analysis is described, and applied to the 
series expansions obtained by Fisher and Gaunt. In § 3 an explicit calculation is 
outlined which, while not rigorous, implies that the correction-to-scaling exponent is 
indeed of the form t (d-4)’2,  and the final section comprises a conclusion. 

2. Analysis of series 

Several methods are, in principle, capable of analysing for the assumed asymptotic 
form. The principal methods are the method of Baker and Hunter (1973), whereby the 
series is transformed in such a manner that the exponents become poles of Pad6 
approximants, the recurrence relation method (Guttmann and Joyce 1972), whose 
natural generalisation to the case of confluent singularities has recently been described 
by Rehr et a1 (1980), and the method introduced by Saul et a1 (1975) in which one fits 
the series to the assumed asymptotic form 

f(~)= 1 a n v n - A ( l - p U ) - Y + B ( l - p U ) - P  as u + l / p - .  (2.1) 
n s O  

None of these methods is directly applicable to the present problem, due to the 
loose-packed nature of the hypercubic lattices, which have ‘antiferromagnetic’ 
singularities at U = l / p  if the ferromagnetic singularity is at u = 1/p.  For the Ising 
model in any dimension this follows from consideration of the graphs which contribute 
to the specific heat expansion, which are all of even degree, while the analogous result 
for the SAW problem has been obtained by Guttmann and Whittington (1978). 

Using the Baker-Hunter method, we found that the effects of the antiferromagnetic 
singularity masked the confluent singu!arity. Using an Euler transformation to map the 
antiferromagnetic singularity to infinity appeared to distort the complex plane, to the 
extent that the transformed series failed to behave smoothly when analysed by the 
Baker-Hunter method. 

The recurrence relation method was also comparatively unsuccessful, due to both 
the presence of the antiferromagnetic singularity and the comparatively short length of 
the series. One feature of the recurrence relation method is that comparatively long 
series are often required to obtain reliable estimates of the critical parameters. 

The Saul-Wortis method, in which successive quintets of coefficients are used to 
estimate the critical parameters A,  B, p, (Y and p, also requires modification for 
loose-packed lattices. For close-packed lattices the equations, though nonlinear, are 
cubic or quadratic polynomials and can be readily solved. For loose-packed lattices it is 
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appropriate (Gaunt and Guttmann 1974) to consider every second coefficient, and this 
has the unfortunate effect of distinctly increasing the complexity of the equations. 
Accordingly, we must solve systems of nonlinear equations by any one of a number of 
standard numerical analysis techniques. 

It is this method we choose to pursue, as the only one that gives convergent estimates 
for the critical parameters. The numerical algorithm used is a generalisation of 
Newton's method, and is available as FORTRAN subroutine NSOlA in the Harwell 
Scientific Subprogram Library. 

Any iterative procedure requires an initial estimate, and in this analysis we have 
used as our starting point the value of p given by Fisher and Gaunt. We have also used 
the fact that the dominant singularity is known to be a simple pole ( y  = l ) ,  so that we 
only require estimates of four unknowns A, B, p and ,B. 

The numerical algorithm is such that its performance is best if all the unknown 
parameters are of the same magnitude. For this reason, since y is fixed at 1, we have 
normalised the series to a critical point of approximately 1 by dividing the coefficient of 
U" by p ". Finally, to make the leading amplitude A approximately equal to 1, we have 
multiplied the series by aconstant C. That is, given the series (2 . l ) , f (v)  = E,- r O  a,u ", we 
have constructed the series F ( v )  = C E,aO a,(u/p)" = E,,aO b,,u", where C is chosen so 
that each b, = 1. Then, setting y = 1, we have used successive quartets of coefficients 
{bn, b,,-2, b,..4, 6 ,  +} with n = 6 , 7 , .  . . , nmax (where nmax is the power of the highest 
available coefficient) to estimate the critical parameters A, B, p and ,B in (2.1). 

For the five-dimensional SAW model, denoting p* as our estimate of the true value 
p, and choosing l / p *  = 0.113 230 (Fisher and Gaunt 1964) and C = 7 / p *  as our 
starting estimates, we find that the coefficients b, slowly increase from 0.79 to 0.97. 

Analysing as stated above, we obtain the sequence of estimates shown in table 1. 
The estimates of p / p *  are slowly decreasing, and appear to be approaching a value 
around 1.0007 or 1.0008. If the correct value of p* had been chosen, this sequence 
would approach 1. Notice that alternate estimates of ,B are increasing regularly. We 
next choose a range of values of p*  consistent with the above estimates, that is, our 
range of p*  is 0.07-0.08% lower than that used above, and, holding p constant at this 
value, use successive triples of alternate terms {b,, bn-2r bn-4} to estimate A, B and p. In 
table 2 we show the result of this analysis for three values of p* in the range obtained 
from the preceding analysis. From this analysis it can be seen that, for 1 / p *  = 
0.113 150, alternate values of both p and AC are steadily increasing, while for 
1 / p *  = 0.113 145 the rate of increase is much slower, and indeed the last two even 
estimates are steady. For 1 / p *  = 0.113 140 the odd estimates are increasing and the 
last two even estimates are decreasing. For a wider spread of values (not shown) this 
pattern of behaviour continues. For l / p * > 0 - 1 1 3  150 the estimates of p and AC 

Table 1. Five-dimensional SAW generating function. Estimate of critical parameters 
assuming y = 1 and C = 7 / ~ * .  

n P/W* P AC B 

8 1.001 69 0,253 0,974 9 -0.507 
9 1.001 38 0.218 0,979 7 -0.702 

10 1.000 89 0,472 1,005 0 -0,308 
11 1.000 96 0,362 0,995 8 -0,429 
12 1.000 75 0,526 1,015 1 -0.288 
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Table 2. Five-dimensional SAW generating function. Estimate of critical parameters with 
critical point fixed and assuming y = 1, C = 7 / p * .  

1 / ~ * = 0 . 1 1 3  140 1 / p *  = 0.113 145 l / p *  = 0,113 150 

n P  AC B P AC B P AC B 

6 0.366 0.942 -0.393 0.371 0.995 -0.390 0.376 0.996 -0.387 
7 0.321 0.947 -0.502 0.328 0.996 -0.493 0,335 0.997 -0.485 
8 0.495 1.010 -0.300 0.505 1.012 -0.298 0.515 1.014 -0.295 
9 0.411 1.003 -0.386 0,423 1'005 -0.376 0.437 1.008 -0.368 

10 0.509 1.001 -0.293 0.525 1.015 -0.288 0.541 1.018 -0.284 
11 0.437 1.001 -0.360 0.457 1.009 -0.347 0.476 1.012 -0.336 
12 0.502 1.010 -0.297 0.525 1.015 -0.288 0.547 1'019 -0.281 

increase more and more rapidly as 1 / p *  increases, while for l / p * < 0 - 1 1 3  140 
estimates of p and A C  decrease more and more rapidly. Since the estimates should be 
steady at the correct value of p * ,  we can make the estimate p =0.113 14*0-000 01, 
p = 0.50*0.1, A C  = 1.01 *0*02, BC = -0-30*0-04. These estimates are made on 
the basis that the even estimates are the most obviously convergent, while the odd 
estimates are changing more rapidly. Though more attention has been paid to the even 
estimates, the above values are nevertheless consistent with the apparent limits of both 
odd and even sequences. 

For the five-dimensional Ising model the same analysis was performed. As before, 
we set C =7/p* ,  with the initial estimate p* = 0.113 54. In order to save space, the 
detailed results are not shown. However the behaviour of the series was qualitatively 
similar to the SAW generating function series, though slightly better behaved. Following 
the method of the previous paragraph, we were able to make the estimate 1 / p  = U, = 

Despite the apparent reasonableness of these results, we found some difficulty in 
applying the above method of analysis to the series. The reason for this was that 
estimates of p are quite small, with IplSO-1. As a consequence, we found poor 
convergence of the numerical procedure for estimating the critical parameters. Recall 
that one of the conditions for rapid convergence is that the different parameters should 
be of the same size. In this case, however, we have I y / @ l a  10, which gives rise to poor 
convergence. However, this difficulty can be circumvented by differentiating the series. 
This increases both y and p by 1, but now the ratio y / P  =2,  and the numerical 
procedure is once again quite stable. From table 3 it appears that p / p *  = 1.0007, and 

0.113 427*0*000007, /3=0.50*0*05, AC=1*041*0~007 ,  BC=-0*38*0-02 .  

Table 3. Six-dimensional Ising model susceptibility series. Estimate of critical parameters 
assumingy=1,  C = 7 / p * ,  p*=0,0921.  

n @/CL* P AC B 

8 1.000 39 0.278 0.760 1 -0.271 
9 1 .000 66 0.011 0.752 0 -8,528 

10 1.000 73 0,154 0,753 2 -0,477 
11 1.000 69 0.042 0.752 1 -2,104 
12 1.000 67 0.175 0.754 3 -0.422 
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so a three-parameter fit to alternate terms of the differentiated series was made, with p* 
held constant and y held at 2.0. A range of values of p* around 0.092 04 was used, as 
suggested by the results of a four-parameter fit, and C was chosen to be 0*643/p*. A 
set of results is shown in table 4 for p* = 0,092 033, which is the central estimate of ,LL. 

Repeating this procedure for a range of values of p* gives rise to the estimates 

where the critical parameters refer to the differentiated series. 
p = 0.092 033 f 0.000 007, = 1-02 f 0.05, AC = 0.751 f 0.005, BC = -0.78 * 0.02, 

Table 4. Six-dimensional differentiated Ising model susceptibility series. Estimate of 
critical parameters assuming y = 2, C = 0.643/p* and p* = 0.092 033. 

n P AC B 

5 1.057 0.755 8 -0.758 4 
6 1.039 0,753 0 -0.775 1 
7 1.042 0.752 9 -0.767 4 
8 1.032 0.751 9 -0.780 8 
9 1.036 0.752 0 -0.773 8 

10 1.027 0.751 4 -0.786 5 
11 1.029 0.751 3 -0.782 2 

A similar analysis of the six-dimensional differentiated SAW generating function 
gives p = 0.091 922 f 0.000 008, p = 1.02 f 0.05, AC = 0.745 * 0.005 and B = 

The critical parameters are summarised in table 5 .  For the six-dimensional series we 
have been unable to estimate the subdominant amplitude B, as the differentiation mixes 
in a contribution from the dominant amplitude A, and these two contributions cannot 
subsequedtly be separated. 

From the estimates of p for both the five- and six-dimensional lattices, it appears 
that the correction-to-scaling exponent is constant as n, the dimensionality of the spin 
space, changes. In the next section we give a perturbation analysis that implies that this 
is indeed the case. 

-0.77 f 0.02. 

Table 5. Estimates of critical parameters fitting to the form 
f ( x ) = A ( l - ~ ~ x ) - ' + B ( l - p x ) - ~ .  *see text. 

Five dimensions Six dimensions 

1 / w  P A B l l c c  P A B 

SAW generating 0.113 14 0.50 1.27 -0.38 0.091922 0302 1,158 * 
function iO.000 01 10.10 10.02 10.05 *O.OOO 008 jz0.05 10.008 
Ising 0,113427 0.50 1.311 -0.48 0.092033 0.02 1,168 * 
susceptibility jzO*OOO 007 i0.05 i0 .009 *0.03 iO.000 007 *0.05 *0.008 

3. Calculation of correction terms 

In this section we show that a straightforward perturbation calculation taking into 
account just the one-loop and two-loop graphs yields the desired correction-to-scaling 
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exponents. We use the notation of Wallace (1976), and write the inverse susceptibility 
r = ,y--' as 

ro( T )  = r + C(q = 0, r ) .  (3.1) 

At the critical temperature r vanishes, so that 

ro( Tc) = 0 + X ( q  = 0,O). (3.2) 

Since ro is assumed to be analytic in temperature, subtracting these two equations yields 

T -  Tc= r + [ C ( q  =0 ,  r ) - C ( q  =0 ,  O)]. 

The two lowest-order graphs contributing to the self energy are the one-loop R a n d  
two-loop -4 diagrams. In five dimensions only the one-loop diagram needs to be 
retained, as it gives a contribution proportional to r312. The second diagram gives a 
leading term proportional to r, which just modifies the constant multiplying this term in 
the previous equation. Higher-order contributions are of lower order than the r312 
term. Thus this diagram can (in hindsight) be neglected in the five-dimensional case. In 
six dimensions we require both diagrams. Retaining only the leading-order terms, we 
find that 

T - T c = A o r + A 1 r 3 I 2 + .  . . d = 5  

T - T, = Aor +Alr2(ln r +Bo) d = 6 .  
(3.3) 

Reverting these equations, we find the desired results 

,y - c0t-'(1 + C l P 2 + .  . .) and , y - D o t - l ( l + D l t I n t + .  . .). (3.4) 

These results are independent of n, the dimensionality of the spin space, and accord- 
ingly are in agreement with the existing results for the n + CO limit, which is the spherical 
model. Note that the contributions of the two diagrams considered are n-dependent, 
but for d > 4  this dependence affects only the amplitudes of the correction terms (Cl 
and D1 in (3.4)). For d <4,  where infrared divergences occur, the requirement that the 
renormalised vertex functions must remain finite as the lattice spacing vanishes has the 
consequence that these terms exponentiate, and hence the n dependence moves into 
the exponents. For d = 4 the n dependence manifests itself in the exponent of the 
confluent logarithmic term. 

There are several gaps in the foregoing analysis, which makes it far from rigorous. 
For that reason we give the derivation with appropriate terseness, but have every 
confidence in the correctness of the results. 

4. Conclusion 

We have obtained by perturbation analysis results that imply that the five- and 
six-dimensional n-vector model has 'correction-to-scaling' terms independent of n, and 
have explicitly obtained these exponents. Series analysis of susceptibility series for 
n = 0 and 1 (the SAW problem and the Ising model) enable estimates of critical 
amplitudes and critical temperatures to be made, and incidentally give correction to 
scaling exponent estimates in agreement with those found by exact calculation. Much 
worthwhile work remains to be done in making rigorous the somewhat sketchy 
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perturbation analysis presented above, and-following a suggestion of Fisher (1978, 
private communication)-extending the analysis to include a full discussion of the 
equation-of-state correction terms. 
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